1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
#include <zbootloader.h>
#include <zeta.h>
#include <stddef.h>
#include <string.h>
/* volatile uint8_t rx_head = 0; */
/* volatile uint8_t rx_tail = 0; */
/* volatile uint8_t rx_fifo[FIFO_LEN]; */
struct fifo {
uint8_t head;
uint8_t tail;
uint8_t data[FIFO_LEN];
};
volatile struct fifo rx_fifo = {0, 0, {0}};
uint8_t
fifo_pop(struct fifo *fifo)
{
uint8_t ret = fifo->data[fifo->head];
if (++fifo->head >= LEN(fifo->data))
fifo->head = 0;
return ret;
}
void
fifo_push(struct fifo *fifo, uint8_t v)
{
fifo->data[fifo->tail] = v;
if (++fifo->tail >= LEN(fifo->data))
fifo->tail = 0;
}
bool
fifo_empty(const struct fifo *fifo)
{
return (fifo->head == fifo->tail);
}
void
fifo_clear(struct fifo *fifo)
{
fifo->head = 0;
fifo->tail = 0;
}
static const uint8_t sio_a_cfg[] = {
0b00011000, // Reset channel
4 , // wr4
0b00000100, // X1 clock, one stop bit, no parity
1 , // wr1
SIO_RX_INT_MD0 | SIO_RX_INT_MD1, // interrupt on every Rx, no wait function
3 , // wr3
0b11000001, // enable Rx - 8 bit char
5 , // wr5
0b01101000 // enable Tx - 8 bit char
};
extern void *rx_isr_ptr;
extern void *ctc0_isr_ptr;
extern void *ctc1_isr_ptr;
extern void *ctc2_isr_ptr;
extern void *ctc3_isr_ptr;
#define ISR_OFFSET(x) ((unsigned int)&x)
static const unsigned char sio_b_cfg[] = {
0b00011000, // Reset channel
2 , // load interrupt vector
ISR_OFFSET(rx_isr_ptr) // int_table_rx
};
/* int_table: */
/* int_table_rx: */
/* dw rx_isr */
void
rx_isr(void) __critical __interrupt(0)
{
fifo_push(&rx_fifo, sio_a_data);
}
static volatile uint32_t millis = 0;
void
ctc3_isr(void) __critical __interrupt(1)
{
millis += 5;
}
uint32_t
clock(void)
{
volatile uint32_t ret;
DI;
ret = millis;
EI;
return ret;
}
void
putbyte(unsigned char b)
{
unsigned char ctrl = 0;
sio_a_data = b;
while (!(ctrl & 0x04)) {
sio_a_ctrl = 0;
ctrl = sio_a_ctrl;
}
}
static volatile int32_t errno = 0;
uint8_t
getbyte(void)
{
uint8_t b;
uint32_t ms = clock();
errno = 0;
while (fifo_empty(&rx_fifo)) {
if (clock() - ms > TIMEOUT_MS) {
errno = ERR_TIMEOUT;
return 0;
}
}
DI;
b = fifo_pop(&rx_fifo);
EI;
return b;
}
void
flush(void)
{
DI;
fifo_clear(&rx_fifo);
EI;
}
// Hamming(7,4) encoding
uint8_t
encode(uint8_t x)
{
uint8_t y = 0;
const uint8_t c[4] = {0x61, 0x52, 0x34, 0x78};
for (uint8_t i = 0; i < 4; ++i)
y ^= ((x >> i) & 1) ? c[i] : 0;
return y;
}
// Hamming(7,4) decoding
uint8_t
decode(uint8_t x)
{
uint8_t p = 0;
const uint8_t r[7] = {6, 5, 3, 7, 1, 2, 4};
for (int i = 0; i < 7; ++i)
p ^= ((x >> i) & 1) ? r[i] : 0;
// Assume simple error, attempt correction
if (p) {
size_t i = 0;
for (i = 0; i < LEN(r); ++i) {
if (r[i] == x)
break;
}
x ^= (1 << i);
}
return x & 0x0F;
}
int
read(void *buf, size_t count)
{
uint8_t b;
uint8_t *p = buf;
for (int n = 0; n < count; ++n) {
b = decode(getbyte());
if (errno)
return errno;
b |= (decode(getbyte()) << 4);
if (errno)
return errno;
p[n] = b;
}
return 0;
}
int
write(const void *buf, size_t count)
{
const uint8_t *p = buf;
for (size_t i = 0; i < count; ++i) {
putbyte(encode(p[i] & 0x0F));
putbyte(encode((p[i] >> 4) & 0x0F));
}
return 0;
}
int
read_header(struct header *header)
{
int err;
uint8_t ack;
uint16_t checksum;
while (1) {
if ((err = read(header, sizeof(*header))))
return err;
checksum = header->checksum;
header->checksum = 0;
if (checksum == crc16(header, sizeof(*header))) {
header->checksum = checksum;
ack = ACK;
write(&ack, sizeof(ack));
return 0;
} else {
ack = NACK;
write(&ack, sizeof(ack));
}
}
}
int
read_buf(size_t len, void *buf)
{
int err;
uint8_t ack;
uint16_t checksum;
for (int i = 0; i < MAX_TRANS_ATTEMPTS; ++i) {
// TODO: reduce code?
if ((err = read(&checksum, sizeof(checksum)))
|| (err = read(buf, len)))
break;
if (checksum == crc16(buf, len)) {
ack = ACK;
write(&ack, sizeof(ack));
return 0;
} else {
ack = NACK;
write(&ack, sizeof(ack));
}
}
return -1;
}
int
write_buf(size_t len, const void *buf)
{
int err;
uint8_t ack = NACK;
uint16_t checksum = crc16(buf, len);
for (int i = 0; i < MAX_TRANS_ATTEMPTS; ++i){
write(&checksum, sizeof(checksum));
write(buf, len);
// If TIMEOUT sending just give up
if ((err = read(&ack, sizeof(ack))))
return err;
if (ack == ACK)
return 0;
}
return -1;
}
// TODO: Restart after timeouts
void
loop(void)
{
struct header header;
uint8_t buf[MAX_PACKET_SIZE];
while (1) {
if (read_header(&header)) {
flush();
continue;
}
switch (header.type) {
case CMD_BOOT:
((void (*)(void))header.address)();
break;
case CMD_READ:
write_buf(header.length, (const void *)header.address);
break;
case CMD_WRITE:
if (!read_buf(header.length, buf))
memcpy((void *)header.address, buf, header.length);
break;
case CMD_ECHO:
if (!read_buf(header.length, buf))
write_buf(header.length, buf);
break;
default:
break;
}
flush();
}
}
int
main(void)
{
// Reset DMA
dma_ctrl = 0xC3;
// Init CTC
// 16 prescaler, timer mode
ctc_channel_1 = (CTC_CLK_TRG_BIT | CTC_TIME_CONST_BIT | CTC_RST_BIT
| CTC_CTRL_OR_VECTOR_BIT);
ctc_channel_1 = (CPU_FREQ / 16 / 9600); // 115200
// 200Hz clock
ctc_channel_3 = (CTC_INT_BIT | CTC_PRESCALER_BIT | CTC_CLK_TRG_BIT |
CTC_TIME_CONST_BIT | CTC_RST_BIT | CTC_CTRL_OR_VECTOR_BIT);
ctc_channel_3 = (CPU_FREQ / 256 / 144);
ctc_channel_0 = ISR_OFFSET(ctc3_isr_ptr) | (3 << 1);
// Init SIO
for (uint8_t i = 0; i < LEN(sio_a_cfg); ++i)
sio_a_ctrl = sio_a_cfg[i];
for (uint8_t i = 0; i < LEN(sio_b_cfg); ++i)
sio_b_ctrl = sio_b_cfg[i];
// Interrupt mode 2
IM(2);
// Enable interrupts
EI;
loop();
return 0;
}
|