blob: 69a30e003b823b2bf7dc5eeaf82e114136dd1946 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
#version 420
in layout(location=0) vec3 position;
in layout(location=1) vec2 Texture_UV;
in layout(location=2) vec3 normal;
in layout(location=3) vec3 tangent;
uniform mat4 M_MVP; /* Total Transform matrix */
uniform mat4 M_model; /* Model to world space transformation matrix */
uniform vec3 lightPosition[4];
uniform vec3 World_eyePosition;
uniform float number_of_rows;
uniform vec2 offset;
out vec2 Fragment_UV;
out vec4 Fragment_Color;
out vec3 toLightVector[4];
out vec3 toEyeVector;
void main()
{
/*We add a 0 on the vec4 so we can remove the translation from the matrix
(WE DONT WANT THE NORMAL TO BE TRANSLATED) */
vec3 n = normalize( (M_model * vec4(normal, 0.0)).xyz );
vec3 t = normalize( (M_model * vec4(tangent, 0.0)).xyz );
/* Orthogonalization */
t = normalize(t - dot(t, n) * n);
vec3 biTangent = normalize( cross(t, n) );
/* Matrix use by normal mapping */
mat3 tbnMatrix = mat3(t, biTangent, n);
tbnMatrix = transpose(tbnMatrix);
vec3 World_Position = vec3(M_model * vec4(position, 1.0));
for(int i = 0; i < 4; i++)
{
/* vector que apunta hacia la luz*/
toLightVector[i] = tbnMatrix * (lightPosition[i] - World_Position);
}
/* Vector hacia el ojo*/
toEyeVector = normalize( tbnMatrix * (World_eyePosition - World_Position) );
gl_Position = M_MVP * vec4(position, 1.0);
Fragment_UV = vec2(Texture_UV.x, 1 - Texture_UV.y); /*Invert y axis*/
Fragment_UV = (Fragment_UV / number_of_rows) + offset;
}
|