summaryrefslogtreecommitdiff
path: root/src/math/orbit.org
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/orbit.org')
-rw-r--r--src/math/orbit.org89
1 files changed, 89 insertions, 0 deletions
diff --git a/src/math/orbit.org b/src/math/orbit.org
new file mode 100644
index 0000000..5e4040a
--- /dev/null
+++ b/src/math/orbit.org
@@ -0,0 +1,89 @@
+#+title:Orbit
+#+setupfile: ../../math_options.org
+
+* Disclaimer
+This site as of now just a technology demonstration and its claims
+should not be taken as true (even though I myself am pretty confident
+they are)
+
+* Deriving Kepler's first law from Newton's law of universal gravitation
+
+The movement of an object with mass $m$ orbiting another body with mass $M$ is
+given by Newton's law of gravitation. If $m \ll M$ it is possible to consider
+the position of the larger object constant and use it as the origin of our
+coordinate system. Then the following equation applies for movement of the
+smaller object:
+
+{{{beg-eqn}}}
+m\ddot{\bm{r}} = - \frac{GMm}{r^3}\bm{r} \Leftrightarrow \ddot{\bm{r}} = - \frac{GM}{r^3}\bm{r}
+{{{end-eqn}}}
+
+In order to solve this differential equation we first consider the angular
+momentum of or object around its orbit.
+
+{{{beg-eqn}}}
+\bm{L} = \bm{r} \times m \dot{\bm{r}}
+{{{end-eqn}}}
+
+In the abscense of external toques, because the only force acting on the object
+is parallel to its position, the angular momentum is conserved.
+
+{{{beg-eqn}}}
+\deriv{\bm{L}}{t} = \dot{\bm{r}} \times m \dot{\bm{r}} + \bm{r} \times m \ddot{\bm{r}} = 0
+{{{end-eqn}}}
+
+We now multiply both sides of our equation from the right by the angular
+momentum and develop the right side of the equation using vector identities.
+
+{{{beg-align}}}
+\ddot{\bm{r}} \times \bm{L} &= -GM\frac{\bm{r} \times \left(\bm{r} \times m \dot{\bm{r}}\right)}{r^3}\\
+&= - \frac{GMm}{r^3} \left(\left(\bm{r} \cdot \dot{\bm{r}}\right)\bm{r} - \left(\bm{r} \cdot \bm{r}\right)\dot{\bm{r}}\right)\\
+&= GMm\left(\frac{\left(\bm{r} \cdot \bm{r}\right)\dot{\bm{r}}}{r^3} - \frac{\left(\bm{r} \cdot \dot{\bm{r}}\right)\bm{r}}{r^3}\right)\\
+&= GMm\left(\frac{\dot{\bm{r}}}{r} - \frac{\left(\bm{r} \cdot \dot{\bm{r}}\right)\bm{r}}{r^3}\right)\\
+&= GMm\left(\frac{1}{r} \deriv{\bm{r}}{t} + \deriv{}{t}\left(\frac{1}{r}\right)\bm{r}\right)\\
+&= GMm\deriv{}{t}\left(\frac{\bm{r}}{r}\right)
+{{{end-align}}}
+
+We observe that each side of our equation is a derivative of a quantity. We know
+integrate both sides and take the integrations constant into account.
+
+{{{beg-align}}}
+& \deriv{}{t} \left(\dot{\bm{r}} \times \bm{L}\right) = GM \deriv{}{t}\left(\frac{\bm{r}}{r}\right)\\
+\Leftrightarrow \quad & \dot{\bm{r}} \times \bm{L} = GM \frac{\bm{r}}{r} + \bm{a}
+{{{end-align}}}
+
+Our objective is now to solve the equation for $r$, so we multiply both sides by $\bm{r}$:
+
+{{{beg-align}}}
+\dot{\bm{r}} \times \left(\bm{r} \times \dot{\bm{r}}\right) &= GM \frac{\bm{r}}{r} + \bm{a}\\
+\bm{r} \cdot \left(\dot{\bm{r}} \times \left(\bm{r} \times \dot{\bm{r}}\right)\right) &= GMr + \bm{r} \cdot \bm{a}
+{{{end-align}}}
+
+By applying a cyclic permutation of the resulting triple product and using the
+known property of the scalar product we now express the equation only in terms
+of the magnitudes of the vectors.
+
+{{{beg-align}}}
+\left(\bm{r} \times \dot{\bm{r}}\right) \cdot \left(\bm{r} \times \dot{\bm{r}}\right) &= GMr + \bm{r} \cdot \bm{a}\\
+\left(\frac{L}{m}\right)^2 &= GMr + \bm{r} \cdot \bm{a}\\
+\left(\frac{L}{m}\right)^2 &= GMr + r a \cos\theta
+{{{end-align}}}
+
+The last steps are to solve for $r$
+
+{{{beg-align}}}
+r &= \left(\frac{L}{m}\right)^2 \frac{1}{GM + a \cos\theta}\\
+&= \left(\frac{L}{m}\right)^2 \frac{1}{GM} \frac{1}{1 + \frac{a}{GM} \cos\theta}\\
+&= \left(\frac{L}{m}\right)^2 \frac{1}{GM} \frac{1}{1 + e\cos\theta}
+{{{end-align}}}
+
+Finally we reach our result. Objects orbiting according to Newton's Law of
+Gravitation follow paths that correspond to the conic sections. Here is Kepler's
+first Law a special case, where our object has a stable orbit around the larger
+body.
+
+{{{beg-eqn}}}
+r &= \frac{L^2}{GM m^2} \frac{1}{1 + e\cos\theta}
+{{{end-eqn}}}
+
+* Deriving a physical interpretation of the excentricity of the orbit