diff options
-rw-r--r-- | schroedinger/schrodinger_plot.py | 74 |
1 files changed, 73 insertions, 1 deletions
diff --git a/schroedinger/schrodinger_plot.py b/schroedinger/schrodinger_plot.py index 9369e2e..f572ae6 100644 --- a/schroedinger/schrodinger_plot.py +++ b/schroedinger/schrodinger_plot.py @@ -1,5 +1,77 @@ +import sys +import numpy as np +import matplotlib.pyplot as plt +from pathlib import Path +sys.path.insert(0, str(Path.cwd().parent)) + + +def plot_potential(ax: plt.Axes, solution_path: str): + potential_data = np.loadtxt(f'{solution_path}/potential.dat') + x = potential_data[:, 0] + V = potential_data[:, 1] + ax.plot(x, V, c='black', ls='-', marker='') + + +def plot_wavefuncs(ax: plt.Axes, solution_path: str, wavefunction_scale: float = 1.0): + wavefuncs_data = np.loadtxt(f'{solution_path}/wavefuncs.dat') + energies = np.loadtxt(f'{solution_path}/energies.dat') + x = wavefuncs_data[:, 0] + colors = ['blue', 'red'] + for wave_index in range(1, wavefuncs_data.shape[1]): + energy = energies[wave_index-1] + wave_function = wavefuncs_data[:, wave_index] * wavefunction_scale + energy + ax.plot(x, wave_function, color=colors[wave_index%2], zorder=100) + + +def plot_expected_value(ax1: plt.Axes, ax2: plt.Axes, solution_path: str): + expvalues_data = np.loadtxt(f'{solution_path}/expvalues.dat') + energies = np.loadtxt(f'{solution_path}/energies.dat') + + expected_values = expvalues_data[:, 0] + uncertainties = expvalues_data[:, 1] + + x_lim = ax1.get_xlim() + y_lim = ax1.get_ylim() + for index in range(expvalues_data.shape[0]): + energy = energies[index] + expected_value = expected_values[index] + uncertainty = uncertainties[index] + + ax1.plot(expected_value, energy, marker='x', ls='', c='green', zorder=101) + ax1.hlines(energy, *x_lim, colors='gray', alpha=0.5) + + ax2.hlines(energy, *x_lim, colors='gray', alpha=0.5) + ax2.plot(uncertainty, energy, color='orange', marker='+', ls='', markersize=10) + + uncertainty_max = uncertainties.max() + ax1.set(xlim=x_lim, ylim=y_lim) + ax2.set(xlim=(0, uncertainty_max*1.1), ylim=y_lim) + + +def plot_solution(solution_path: str, pdf_path: str, show_plot: bool = True, export_pdf: bool = True, + wavefunction_scale: float = 1.0, energy_lim: None | tuple[float, float] = None, + x_lim: None | tuple[float, float] = None, uncertainty_lim: None | tuple[float, float] = None): + fig = plt.figure(dpi=200, figsize=(6, 4), tight_layout=True) + ax1: plt.Axes = fig.add_subplot(121) + ax2: plt.Axes = fig.add_subplot(122) + + plot_potential(ax1, solution_path) + plot_wavefuncs(ax1, solution_path, wavefunction_scale) + plot_expected_value(ax1, ax2, solution_path) + + ax1.set(xlabel='x [Bohr]', ylabel='Energy [Hartree]', title=r'Potential, Eigenstate, $\langle x \rangle$', + xlim=x_lim, ylim=energy_lim) + ax2.set(xlabel='[Bohr]', title=r'$\sigma _{x}$', yticks=[], xlim=uncertainty_lim, ylim=energy_lim) + if export_pdf: + plt.savefig(f'{pdf_path}/schroedinger_solution.pdf', dpi=300) + if show_plot: + plt.show() + plt.close() + + def main(): - pass + plot_solution('test', 'test') + if __name__ == '__main__': main() |