diff options
author | Thomas Albers Raviola <thomas@thomaslabs.org> | 2024-08-23 10:52:28 +0200 |
---|---|---|
committer | Thomas Albers Raviola <thomas@thomaslabs.org> | 2024-08-23 10:52:28 +0200 |
commit | 70fbca0c321331710ede1896a99530e2dcab4b4a (patch) | |
tree | ece66793f65cc890b2b0ad4418ab57240394fdfb /test | |
parent | 6b07e8f7348d4b6cd3b36d21f2894927da093f86 (diff) |
Improve pylint score of test_infinite.py
Diffstat (limited to 'test')
-rw-r--r-- | test/test_infinite.py | 55 |
1 files changed, 28 insertions, 27 deletions
diff --git a/test/test_infinite.py b/test/test_infinite.py index bca21b6..066604c 100644 --- a/test/test_infinite.py +++ b/test/test_infinite.py @@ -1,46 +1,47 @@ -import pytest +''' +Test solutions to the infinite potential well by comparing with theoretical +values +''' + import numpy as np from numpy.typing import NDArray -import matplotlib.pyplot as plt - from schroedinger import ( - Config, potential_interp, build_potential, solve_schroedinger + Config, build_potential, solve_schroedinger ) - -def psi(x: NDArray[np.float64], n: int, a: float) -> NDArray[np.float64]: - n += 1 # Index starting from 0 - x = -x + a / 2 # Reflect x and move to the left - return np.sqrt(2 / a) * np.sin(n * np.pi * x / a) +def psi(x: NDArray[np.float64], level: int, resolution: float) -> NDArray[np.float64]: + '''Generate the n=level wave function''' + level += 1 # Index starting from 0 + x = -x + resolution / 2 # Reflect x and move to the left + return np.sqrt(2 / resolution) * np.sin(level * np.pi * x / resolution) -def energy(n: int, a: float, mass: float) -> float: - return (n + 1)**2 * np.pi**2 / mass / a**2 / 2.0 +def energy(level: int, resolution: float, mass: float) -> float: + '''Energy eigenvalue for the n=level wave function''' + return (level + 1)**2 * np.pi**2 / mass / resolution**2 / 2.0 def test_infinite() -> None: + '''Test infinite potential well''' conf = Config('test/infinite.inp') potential, delta = build_potential(conf) - e, v = solve_schroedinger(conf.mass, potential[:, 1], delta, conf.eig_interval) - # Account for -v also being an eigenvector if v is one - v = np.abs(v) + energies, wavefuncs = solve_schroedinger(conf.mass, potential[:, 1], delta, + conf.eig_interval) - a = np.abs(conf.points[1][0] - conf.points[0][0]) - e_theory = np.zeros(e.shape) - v_theory = np.zeros(v.shape) + # Account for -v also being an eigenvector if v is one + wavefuncs = np.abs(wavefuncs) + resolution = np.abs(conf.points[1][0] - conf.points[0][0]) + energies_theory = np.zeros(energies.shape) + wavefuncs_theory = np.zeros(wavefuncs.shape) - for n in range(e.shape[0]): - e_theory[n] = energy(n, a, conf.mass) - v_theory[:, n] = np.abs(psi(potential[:, 0], n, a)) - # for n in range(e.shape[0]): - # plt.plot(potential[:, 0], np.abs(v[:, n]), label='Num{}'.format(n)) - # plt.plot(potential[:, 0], np.abs(v_theory[:, n]), ls='--', label='Theory{}'.format(n)) - # plt.legend() - # plt.savefig('test.pdf') + for level in range(energies.shape[0]): + energies_theory[level] = energy(level, resolution, conf.mass) + wavefuncs_theory[:, level] = np.abs(psi(potential[:, 0], level, + resolution)) - assert (np.allclose(e, e_theory, rtol=1e-2, atol=1e-2) - and np.allclose(v, v_theory, rtol=1e-2, atol=1e-2)) + assert (np.allclose(energies, energies_theory, rtol=1e-2, atol=1e-2) + and np.allclose(wavefuncs, wavefuncs_theory, rtol=1e-2, atol=1e-2)) |