aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorThomas Albers Raviola <thomas@thomaslabs.org>2024-05-21 00:23:43 +0200
committerThomas Albers Raviola <thomas@thomaslabs.org>2024-05-21 00:23:43 +0200
commitc24397c9d2ca50b3989de5107498666724e8c50c (patch)
tree5a0ec275a62251c89abd1800239b59940e8821ae
parent1a90133ff849e1f38a1a0c5cf47c36d4ad1850bd (diff)
Modify gaussian_eliminate to instead use LUP factorization
* linsolver/solvers.py (gaussian_eliminate): Use LUP factorization. * linsolver/solvers.py (lu_factorization): New function. * linsolver/solvers.py (back_substitution): New function. * linsolver/solvers.py (forward_substitution): New function.
-rw-r--r--solvers.py112
1 files changed, 85 insertions, 27 deletions
diff --git a/solvers.py b/solvers.py
index 933bc2f..b544f1b 100644
--- a/solvers.py
+++ b/solvers.py
@@ -1,59 +1,117 @@
-"""Routines for solving a linear system of equations."""
+'''Routines for solving a linear system of equations.'''
import numpy as np
from numpy.typing import NDArray
-
-def gaussian_eliminate(
- aa: NDArray[np.float_],
- bb: NDArray[np.float_],
+def lu_factorization(
+ mm: NDArray[np.float_],
tolerance: float = 1e-6
-) -> NDArray[np.float_] | None:
- """Solves a linear system of equations (Ax = b) by Gauss-elimination
+) -> NDArray[np.float_]:
+ '''Computes the LUP factorization of a matrix
Args:
- aa: Matrix with the coefficients. Shape: (n, n).
- bb: Right hand side of the equation. Shape: (n,)
+ mm: Matrix to factorize
tolerance: Greatest absolute value considered as 0
Returns:
- Vector xx with the solution of the linear equation or None
- if the equations are linearly dependent.
- """
- nn = aa.shape[0]
+ ll: Lower triangular matrix
+ uu: Upper triangular matrix
+ pp: Permutation matrix
+ '''
+ nn = mm.shape[0]
- ee = np.zeros((nn, nn + 1))
- ee[:, 0:nn] = aa
- ee[:, nn] = bb
+ uu = mm.copy()
+ ll = np.zeros((nn, nn), dtype=np.float_)
+ pp = np.eye(nn, dtype=np.float_)
i = 0
j = 0
while i < nn and j < nn:
- pivot_row = i + np.argmax(np.abs(ee[i:, j]))
+ pivot_row = i + np.argmax(np.abs(uu[i:, j]))
- if np.abs(ee[pivot_row, j]) < tolerance:
+ if np.abs(uu[pivot_row, j]) < tolerance:
j = j + 1
continue
if i != pivot_row:
# Swap rows
- ee[[i, pivot_row]] = ee[[pivot_row, i]]
+ uu[[i, pivot_row]] = uu[[pivot_row, i]]
+ ll[[i, pivot_row]] = ll[[pivot_row, i]]
+ pp[[i, pivot_row]] = pp[[pivot_row, i]]
for k in range(i + 1, nn):
- q = ee[k, j] / ee[i, j]
- ee[k, :] = ee[k, :] - q * ee[i, :]
+ q = uu[k, j] / uu[i, j]
+ uu[k, :] = uu[k, :] - q * uu[i, :]
+ ll[k, j] = q
i = i + 1
j = j + 1
- # Check if rank of matrix is lower than nn
- if np.abs(ee[nn - 1, nn - 1]) < tolerance:
- return None
+ return ll + np.eye(nn), uu, pp
+
+def forward_substitution(
+ aa: NDArray[np.float_],
+ bb: NDArray[np.float_]
+) -> NDArray[np.float_]:
+ '''Solves (T x = b), where T is a lower triangular matrix
- # Back substitution
+ Args:
+ aa: lower triangular matrix
+ bb: vector
+
+ Returns:
+ x: solution of the system of equations
+ '''
+ nn = aa.shape[0]
xx = np.zeros((nn, 1), dtype=np.float_)
- for i in range(nn - 1, -1, -1):
- xx[i] = (ee[i, nn] - np.dot(ee[i, i:nn], xx[i:nn])) / ee[i, i]
+ for i in range(nn):
+ xx[i] = (bb[i] - np.dot(aa[i, 0:i], xx[0:i])) / aa[i, i]
+ return xx
+
+def back_substitution(
+ aa: NDArray[np.float_],
+ bb: NDArray[np.float_]
+) -> NDArray[np.float_]:
+ '''Solves (T x = b), where T is a upper triangular matrix
+
+ Args:
+ aa: upper triangular matrix
+ bb: vector
+ Returns:
+ x: solution of the system of equations
+ '''
+ nn = aa.shape[0]
+ xx = np.zeros((nn, 1), dtype=np.float_)
+ for i in range(nn - 1, -1, -1):
+ xx[i] = (bb[i] - np.dot(aa[i, i:], xx[i:nn])) / aa[i, i]
return xx
+
+def gaussian_eliminate(
+ aa: NDArray[np.float_],
+ bb: NDArray[np.float_],
+ tolerance: float = 1e-6
+) -> NDArray[np.float_] | None:
+ '''Solves a linear system of equations (A x = b) by LUP factorization.
+
+ Args:
+ aa: upper triangular matrix
+ bb: vector
+ tolerance: Greatest absolute value considered as 0
+
+ Returns:
+ x: solution of the system of equations
+ '''
+ ll, uu, pp = lu_factorization(aa)
+
+ nn = uu.shape[0]
+ # Check if rank of matrix is lower than nn
+ if np.abs(uu[nn - 1, nn - 1]) < tolerance:
+ return None
+
+ # L y = P @ b
+ y = forward_substitution(ll, pp @ bb)
+ # U @ x = y
+ x = back_substitution(uu, y)
+ return x