aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--schroedinger/schrodinger_plot.py99
1 files changed, 98 insertions, 1 deletions
diff --git a/schroedinger/schrodinger_plot.py b/schroedinger/schrodinger_plot.py
index 9369e2e..b9ad14f 100644
--- a/schroedinger/schrodinger_plot.py
+++ b/schroedinger/schrodinger_plot.py
@@ -1,5 +1,102 @@
+import sys
+import argparse
+import numpy as np
+import matplotlib.pyplot as plt
+from pathlib import Path
+sys.path.insert(0, str(Path.cwd().parent))
+
+
+# argparse setup
+parser = argparse.ArgumentParser(description='Plots the solutions from schrodinger_solve.py')
+msg = 'the path of the solution directory (default: .)'
+parser.add_argument('-s', '--solution', default='.', help=msg)
+msg = 'the path where the pdf should be saved (default: .)'
+parser.add_argument('-p', '--pdf', default='.', help=msg)
+msg = 'Boolean, if True the plot is shown directly (default: True)'
+parser.add_argument('--show', default=True, help=msg, type=bool)
+msg = 'Boolean, if True the plot is exported as a pdf (default: True)'
+parser.add_argument('-e', '--export', default=True, help=msg, type=bool)
+msg = 'Float, scales the wave functions (default: 1.0)'
+parser.add_argument('--scale', default=1.0, help=msg, type=float)
+msg = 'Limit of the x-axis of the left plot. None or tuple[float, float] of shape (x_min, x_max)(default: None)'
+parser.add_argument('-x', '--xlim', default=None, help=msg)
+msg = 'Limit of the y-axis of the left plot. None or tuple[float, float] of shape (y_min, y_max)(default: None)'
+parser.add_argument('-y1', '--energy_lim', default=None, help=msg)
+msg = 'Limit of the y-axis of the right plot. None or tuple[float, float] of shape (y_min, y_max)(default: None)'
+parser.add_argument('-y2', '--uncertainty_lim', default=None, help=msg)
+args = parser.parse_args()
+
+
+def plot_potential(ax: plt.Axes, solution_path: str):
+ potential_data = np.loadtxt(f'{solution_path}/potential.dat')
+ x = potential_data[:, 0]
+ v = potential_data[:, 1]
+ ax.plot(x, v, c='black', ls='-', marker='')
+
+
+def plot_wavefuncs(ax: plt.Axes, solution_path: str, wavefunction_scale: float = 1.0):
+ wavefuncs_data = np.loadtxt(f'{solution_path}/wavefuncs.dat')
+ energies = np.loadtxt(f'{solution_path}/energies.dat')
+ x = wavefuncs_data[:, 0]
+ colors = ['blue', 'red']
+ for wave_index in range(1, wavefuncs_data.shape[1]):
+ energy = energies[wave_index-1]
+ wave_function = wavefuncs_data[:, wave_index] * wavefunction_scale + energy
+ ax.plot(x, wave_function, color=colors[wave_index%2], zorder=100)
+
+
+def plot_expected_value(ax1: plt.Axes, ax2: plt.Axes, solution_path: str):
+ expvalues_data = np.loadtxt(f'{solution_path}/expvalues.dat')
+ energies = np.loadtxt(f'{solution_path}/energies.dat')
+
+ expected_values = expvalues_data[:, 0]
+ uncertainties = expvalues_data[:, 1]
+ uncertainty_max = uncertainties.max()
+
+ x1_lim = ax1.get_xlim()
+ x2_lim = (0, uncertainty_max*1.1)
+ y_lim = ax1.get_ylim()
+ for index in range(expvalues_data.shape[0]):
+ energy = energies[index]
+ expected_value = expected_values[index]
+ uncertainty = uncertainties[index]
+
+ ax1.plot(expected_value, energy, marker='x', ls='', c='green', zorder=101)
+ ax1.hlines(energy, *x1_lim, colors='gray', alpha=0.5)
+
+ ax2.hlines(energy, *x2_lim, colors='gray', alpha=0.5)
+ ax2.plot(uncertainty, energy, color='orange', marker='+', ls='', markersize=10)
+
+ ax1.set(xlim=x1_lim, ylim=y_lim)
+ ax2.set(xlim=x2_lim, ylim=y_lim)
+
+
+def plot_solution(solution_path: str = args.solution, pdf_path: str = args.pdf, show_plot: bool = args.show,
+ export_pdf: bool = args.export, wavefunction_scale: float = args.scale,
+ energy_lim: None | tuple[float, float] = args.energy_lim,
+ x_lim: None | tuple[float, float] = args.xlim,
+ uncertainty_lim: None | tuple[float, float] = args.uncertainty_lim):
+ fig = plt.figure(dpi=200, figsize=(6, 4), tight_layout=True)
+ ax1: plt.Axes = fig.add_subplot(121)
+ ax2: plt.Axes = fig.add_subplot(122)
+
+ plot_potential(ax1, solution_path)
+ plot_wavefuncs(ax1, solution_path, wavefunction_scale)
+ plot_expected_value(ax1, ax2, solution_path)
+
+ ax1.set(xlabel='x [Bohr]', ylabel='Energy [Hartree]', title=r'Potential, Eigenstate, $\langle x \rangle$',
+ xlim=x_lim, ylim=energy_lim)
+ ax2.set(xlabel='[Bohr]', title=r'$\sigma _{x}$', yticks=[], xlim=uncertainty_lim, ylim=energy_lim)
+ if export_pdf:
+ plt.savefig(f'{pdf_path}/schroedinger_solution.pdf', dpi=300)
+ if show_plot:
+ plt.show()
+ plt.close()
+
+
def main():
- pass
+ plot_solution('test', 'test', x_lim=(-5, 5), energy_lim=(0, 3.5), wavefunction_scale=1.0)
+
if __name__ == '__main__':
main()