#include #include #include #include /* volatile uint8_t rx_head = 0; */ /* volatile uint8_t rx_tail = 0; */ /* volatile uint8_t rx_fifo[FIFO_LEN]; */ struct fifo { uint8_t head; uint8_t tail; uint8_t data[FIFO_LEN]; }; volatile struct fifo rx_fifo = {0, 0, {0}}; uint8_t fifo_pop(struct fifo *fifo) { uint8_t ret = fifo->data[fifo->head]; if (++fifo->head >= LEN(fifo->data)) fifo->head = 0; return ret; } void fifo_push(struct fifo *fifo, uint8_t v) { fifo->data[fifo->tail] = v; if (++fifo->tail >= LEN(fifo->data)) fifo->tail = 0; } bool fifo_empty(const struct fifo *fifo) { return (fifo->head == fifo->tail); } void fifo_clear(struct fifo *fifo) { fifo->head = 0; fifo->tail = 0; } static const uint8_t sio_a_cfg[] = { 0b00011000, // Reset channel 4 , // wr4 0b00000100, // X1 clock, one stop bit, no parity 1 , // wr1 SIO_RX_INT_MD0 | SIO_RX_INT_MD1, // interrupt on every Rx, no wait function 3 , // wr3 0b11000001, // enable Rx - 8 bit char 5 , // wr5 0b01101000 // enable Tx - 8 bit char }; extern void *rx_isr_ptr; extern void *ctc0_isr_ptr; extern void *ctc1_isr_ptr; extern void *ctc2_isr_ptr; extern void *ctc3_isr_ptr; #define ISR_OFFSET(x) ((unsigned int)&x) static const unsigned char sio_b_cfg[] = { 0b00011000, // Reset channel 2 , // load interrupt vector ISR_OFFSET(rx_isr_ptr) // int_table_rx }; /* int_table: */ /* int_table_rx: */ /* dw rx_isr */ void rx_isr(void) __critical __interrupt(0) { fifo_push(&rx_fifo, sio_a_data); } static volatile uint32_t millis = 0; void ctc3_isr(void) __critical __interrupt(1) { millis += 5; } uint32_t clock(void) { volatile uint32_t ret; DI; ret = millis; EI; return ret; } void putbyte(unsigned char b) { unsigned char ctrl = 0; sio_a_data = b; while (!(ctrl & 0x04)) { sio_a_ctrl = 0; ctrl = sio_a_ctrl; } } static volatile int32_t errno = 0; uint8_t getbyte(void) { uint8_t b; uint32_t ms = clock(); errno = 0; while (fifo_empty(&rx_fifo)) { if (clock() - ms > TIMEOUT_MS) { errno = ERR_TIMEOUT; return 0; } } DI; b = fifo_pop(&rx_fifo); EI; return b; } void flush(void) { DI; fifo_clear(&rx_fifo); EI; } // Hamming(7,4) encoding uint8_t encode(uint8_t x) { uint8_t y = 0; const uint8_t c[4] = {0x61, 0x52, 0x34, 0x78}; for (uint8_t i = 0; i < 4; ++i) y ^= ((x >> i) & 1) ? c[i] : 0; return y; } // Hamming(7,4) decoding uint8_t decode(uint8_t x) { uint8_t p = 0; const uint8_t r[7] = {6, 5, 3, 7, 1, 2, 4}; for (int i = 0; i < 7; ++i) p ^= ((x >> i) & 1) ? r[i] : 0; // Assume simple error, attempt correction if (p) { size_t i = 0; for (i = 0; i < LEN(r); ++i) { if (r[i] == x) break; } x ^= (1 << i); } return x & 0x0F; } int read(void *buf, size_t count) { uint8_t b; uint8_t *p = buf; for (int n = 0; n < count; ++n) { b = decode(getbyte()); if (errno) return errno; b |= (decode(getbyte()) << 4); if (errno) return errno; p[n] = b; } return 0; } int write(const void *buf, size_t count) { const uint8_t *p = buf; for (size_t i = 0; i < count; ++i) { putbyte(encode(p[i] & 0x0F)); putbyte(encode((p[i] >> 4) & 0x0F)); } return 0; } int read_header(struct header *header) { int err; uint8_t ack; uint16_t checksum; while (1) { if ((err = read(header, sizeof(*header)))) return err; checksum = header->checksum; header->checksum = 0; if (checksum == crc16(header, sizeof(*header))) { header->checksum = checksum; ack = ACK; write(&ack, sizeof(ack)); return 0; } else { ack = NACK; write(&ack, sizeof(ack)); } } } int read_buf(size_t len, void *buf) { int err; uint8_t ack; uint16_t checksum; for (int i = 0; i < MAX_TRANS_ATTEMPTS; ++i) { // TODO: reduce code? if ((err = read(&checksum, sizeof(checksum))) || (err = read(buf, len))) break; if (checksum == crc16(buf, len)) { ack = ACK; write(&ack, sizeof(ack)); return 0; } else { ack = NACK; write(&ack, sizeof(ack)); } } return -1; } int write_buf(size_t len, const void *buf) { int err; uint8_t ack = NACK; uint16_t checksum = crc16(buf, len); for (int i = 0; i < MAX_TRANS_ATTEMPTS; ++i){ write(&checksum, sizeof(checksum)); write(buf, len); // If TIMEOUT sending just give up if ((err = read(&ack, sizeof(ack)))) return err; if (ack == ACK) return 0; } return -1; } // TODO: Restart after timeouts void loop(void) { struct header header; uint8_t buf[MAX_PACKET_SIZE]; while (1) { if (read_header(&header)) { flush(); continue; } switch (header.type) { case CMD_BOOT: ((void (*)(void))header.address)(); break; case CMD_READ: write_buf(header.length, (const void *)header.address); break; case CMD_WRITE: if (!read_buf(header.length, buf)) memcpy((void *)header.address, buf, header.length); break; case CMD_ECHO: if (!read_buf(header.length, buf)) write_buf(header.length, buf); break; default: break; } flush(); } } int main(void) { // Init CTC // 16 prescaler, timer mode ctc_channel_1 = (CTC_CLK_TRG_BIT | CTC_TIME_CONST_BIT | CTC_RST_BIT | CTC_CTRL_OR_VECTOR_BIT); ctc_channel_1 = (CPU_FREQ / 16 / 9600); // 200Hz clock ctc_channel_3 = (CTC_INT_BIT | CTC_PRESCALER_BIT | CTC_CLK_TRG_BIT | CTC_TIME_CONST_BIT | CTC_RST_BIT | CTC_CTRL_OR_VECTOR_BIT); ctc_channel_3 = (CPU_FREQ / 256 / 36); ctc_channel_0 = ISR_OFFSET(ctc3_isr_ptr) | (3 << 1); // Init SIO for (uint8_t i = 0; i < LEN(sio_a_cfg); ++i) sio_a_ctrl = sio_a_cfg[i]; for (uint8_t i = 0; i < LEN(sio_b_cfg); ++i) sio_b_ctrl = sio_b_cfg[i]; // Interrupt mode 2 IM(2); // Enable interrupts EI; loop(); return 0; }