#+title: Solving the laplace equation in Spherical coordinates #+author: Thomas Albers Raviola #+date: 2022-12-15 #+setupfile: ../../math_options.org * Disclaimer This site as of now just a technology demonstration and its claims should not be taken as true (even though I myself am pretty confident they are) * Laplace equation {{{beg-eqn}}} \Delta \phi = 0 {{{end-eqn}}} Solutions to this equation are called harmonics * Laplace equation in spherical coordinates Using the definition for the laplace operator in spherical coordinates, it follows: {{{beg-align}}} \frac{1}{r^2}\pderiv{}{r}\left(r^2 \pderiv{\phi}{r}\right) + \frac{1}{r^2\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{\phi}{\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\phi}{\partial\varphi^2} &= 0\\ \pderiv{}{r}\left(r^2 \pderiv{\phi}{r}\right) + \frac{1}{\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{\phi}{\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\phi}{\partial\varphi^2} &= 0 {{{end-align}}} Using sepration of variables $\phi$ becomes {{{beg-eqn}}} \phi(r, \theta, \varphi) = R(r)Y(\theta, \varphi) {{{end-eqn}}} Applying this to the original equation produces {{{beg-align}}} \pderiv{}{r}\left(r^2 \pderiv{R}{r}\right)Y(\theta, \phi) + \left(\frac{1}{\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{\phi}{\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\phi}{\partial\varphi^2}\right)R(r) &= 0\\ \frac{1}{R(r)}\pderiv{}{r}\left(r^2 \pderiv{R}{r}\right) + \frac{1}{Y(\theta, \phi)}\left(\frac{1}{\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{\phi}{\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\phi}{\partial\varphi^2}\right) &= 0 {{{end-align}}} Because the terms depend on different independant variables, the only way the equation holds is if both terms are constant. {{{beg-align}}} &\frac{1}{R(r)}\pderiv{}{r}\left(r^2 \pderiv{R}{r}\right) = \lambda\\ &\frac{1}{Y(\theta, \phi)}\left(\frac{1}{\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{Y}{\theta}\right)+ \frac{1}{\sin^2\theta}\frac{\partial^2Y}{\partial\varphi^2}\right) = -\lambda {{{end-align}}} * Angle dependant term We again use separation of variables to solve the partial differential equation of the angle dependant term. {{{beg-eqn}}} Y(\theta, \varphi) = \Theta(\theta)\Phi(\varphi) {{{end-eqn}}} Replacing into the equation {{{beg-eqn}}} \lambda\sin^2\theta + \frac{\sin\theta}{\Theta(\theta)}\pderiv{}{\theta}\left(\sin\theta\pderiv{\Theta}{\theta}\right) + \frac{1}{\Phi(\varphi)}\frac{\partial^2\Phi}{\partial\varphi^2} = 0 {{{end-eqn}}} Based on a similar argument it follows that both terms must be constant, with this we may now solve for $\Phi$ {{{beg-eqn}}} \frac{1}{\Phi(\varphi)}\frac{\partial^2\Phi}{\partial\varphi^2} = -m^2 {{{end-eqn}}} {{{beg-eqn}}} \Phi(\varphi) = e^{-m\varphi{}i} {{{end-eqn}}} {{{beg-eqn}}} \lambda\sin^2\theta + \frac{\sin\theta}{\Theta(\theta)}\pderiv{}{\theta}\left(\sin\theta\pderiv{\Theta}{\theta}\right) = m^2 {{{end-eqn}}} {{{beg-eqn}}} l(l+1)\sin^2(\theta)\Theta(\theta) + \pderiv{}{\theta}\left(\sin\theta\pderiv{\Theta}{\theta}\right) = m^2\Theta(\theta) {{{end-eqn}}} {{{beg-eqn}}} l(l+1)\sin^2(\theta)\Theta(\theta) + \sin(\theta)\left(\cos(\theta) \Theta'(\theta) + \sin(\theta) \Theta''(\theta)\right) = m^2\Theta(\theta) {{{end-eqn}}} {{{beg-eqn}}} \sin^2(\theta) \Theta''(\theta) + \sin(\theta)\cos(\theta) \Theta'(\theta) + (l(l+1)\sin^2(\theta) - m^2)\Theta(\theta) = 0 {{{end-eqn}}} {{{beg-eqn}}} \Theta''(\theta) + \cot(\theta)\Theta'(\theta) + \left(l(l+1) - \frac{m^2}{\sin^2\theta}\right)\Theta(\theta) = 0 {{{end-eqn}}} {{{beg-eqn}}} \Theta(\theta) = P(\cos \theta) {{{end-eqn}}} {{{beg-eqn}}} \cot(\theta)\Theta'(\theta) = \cot(\theta) \deriv{}{\theta}P(\cos \theta)=-\cos(\theta) P'(\cos\theta) {{{end-eqn}}} {{{beg-eqn}}} \frac{\text{d}^2}{\text{d}\theta^2}(P(\cos\theta)) = \sin^2(\theta) P''(\cos\theta) - \cos(\theta) P'(\cos\theta) {{{end-eqn}}} {{{beg-eqn}}} \sin^2(\theta) P''(\cos\theta) - 2\cos(\theta) P'(\cos\theta) + \left(l(l+1)-\frac{m^2}{\sin^2\theta}\right)P(\cos\theta) = 0 {{{end-eqn}}} {{{beg-eqn}}} x = \cos\theta {{{end-eqn}}} {{{beg-eqn}}} (1 - x^2)P''(x) - 2xP'(x) + \left(l(l+1)-\frac{m^2}{1-x^2}\right)P(x) = 0 {{{end-eqn}}} Solve using Frobenius Method