#+TITLE:Spherical Coordinates #+SETUPFILE: ../math_options.org #+LATEX_HEADER: \usepackage{bm} #+LATEX_HEADER: \usepackage{mathtools} #+LATEX_HEADER: \newcommand{\deriv}[2]{\frac{\text{d}#1}{\text{d}#2}} #+LATEX_HEADER: \newcommand{\unitv}[1]{\bm{\hat{e}}_#1} * Disclaimer This site as of now just a technology demonstration and its claims should not be taken as true (even though I myself am pretty confident they are) * Coordinate transformations \begin{align*} x &= r \sin\theta \cos\varphi\\ y &= r \sin\theta \sin\varphi\\ z &= r \cos\theta \end{align*} * Local unit vectors \begin{align*} \bm{\hat{e}}_r &= \sin\theta \cos\varphi \bm{\hat{e}}_x + \sin\theta \sin\varphi \bm{\hat{e}}_y + \cos\theta \bm{\hat{e}}_z\\ \bm{\hat{e}}_\theta &= \cos\theta \cos\varphi \bm{\hat{e}}_x + \cos\theta \sin\varphi \bm{\hat{e}}_y - \sin\theta \bm{\hat{e}}_z\\ \bm{\hat{e}}_\varphi &= - \sin\theta \sin\varphi \bm{\hat{e}}_x + \sin\theta \cos\varphi \bm{\hat{e}}_y \end{align*} * Kinematic in spherical coordinates ** Time derivatives of the local unit vectors \begin{align*} \deriv{\unitv{r}}{t} &= \dot{\theta}\unitv{\theta} + \dot{\varphi}\sin\theta \unitv{\varphi}\\ \deriv{\unitv{\theta}}{t} &= -\dot{\theta}\unitv{r} + \dot{\varphi}\cos\theta \unitv{\varphi}\\ \deriv{\unitv{\varphi}}{t} &= -\dot{\varphi} \left(\sin\theta\unitv{r} + \cos\theta\unitv{\theta}\right) \end{align*} ** Position vector and its time derivatives \begin{align*} \bm{r} &= r\unitv{r}\\ \bm{v} &= \dot{r}\unitv{r} + r\dot\theta\unitv{\theta} + r\dot\varphi\sin\theta\unitv{\varphi}\\ \bm{a} &= \left(\ddot{r} - r\dot\theta^2 - r\dot\varphi^2\sin^2\theta\right)\unitv{r} + \left(2\dot{r}\dot\theta + r\ddot\theta - r\dot\varphi^2\sin\theta\cos\theta\right)\unitv{\theta} + \left(2\dot{r}\dot\varphi\sin\theta + 2r\dot\theta\dot\varphi\cos\theta + r\ddot\varphi\sin\theta\right)\unitv{\varphi} \end{align*}