#+TITLE:Polar Coordinates #+SETUPFILE: ../math_options.org #+LATEX_HEADER: \usepackage{bm} #+LATEX_HEADER: \usepackage{mathtools} #+LATEX_HEADER: \newcommand{\deriv}[2]{\frac{\text{d}#1}{\text{d}#2}} #+LATEX_HEADER: \newcommand{\unitv}[1]{\bm{\hat{e}}_#1} * Disclaimer This site as of now just a technology demonstration and its claims should not be taken as true (even though I myself am pretty confident they are) * Coordinate transformations \begin{align*} x &= r \cos\theta\\ y &= r \sin\theta \end{align*} * Local unit vectors \begin{align*} \unitv{r} &= \cos\theta \unitv{x} + \sin\theta \unitv{y}\\ \unitv{\theta} &= -\sin\theta \unitv{x} + \cos\theta \unitv{y} \end{align*} * Kinematic in polar coordinates ** Time derivatives of the local unit vectors \begin{align*} \deriv{\unitv{r}}{t} &= \dot{\theta}\unitv{\theta}\\ \deriv{\unitv{\theta}}{t} &= -\dot{\theta}\unitv{r} \end{align*} ** Position vector and its time derivatives \begin{align*} \bm{r} &= r\unitv{r}\\ \bm{v} &= \dot{r}\unitv{r} + r\dot\theta\unitv{\theta}\\ \bm{a} &= \left(\ddot{r} - r\dot\theta^2\right)\unitv{r} + \left(2\dot{r}\dot\theta + r\ddot\theta\right)\unitv{\theta} \end{align*}