From 61b5ce20f25c5785e41574998a12c6d06eb05a5e Mon Sep 17 00:00:00 2001 From: Thomas Albers Date: Wed, 8 Mar 2023 23:43:00 +0100 Subject: Restructure build system and directory structures --- src/physics/lorentz-transformation.org | 62 ++++++++++++++++++++++++++++++++++ 1 file changed, 62 insertions(+) create mode 100644 src/physics/lorentz-transformation.org (limited to 'src/physics') diff --git a/src/physics/lorentz-transformation.org b/src/physics/lorentz-transformation.org new file mode 100644 index 0000000..a5e3c8f --- /dev/null +++ b/src/physics/lorentz-transformation.org @@ -0,0 +1,62 @@ +#+TITLE:Lorentz Transformation +#+SETUPFILE: ../math_options.org +#+LATEX_HEADER: \usepackage{bm} +#+LATEX_HEADER: \usepackage{mathtools} +#+LATEX_HEADER: \newcommand{\dcoff}[1]{\frac{\text{d}}{\text{d}x} #1} +#+LATEX_HEADER: \newcommand{\sdcoff}[1]{\frac{\text{d}#1}{\text{d}x}} +#+LATEX_HEADER: \newcommand{\deriv}[2]{\frac{\text{d}}{\text{d}x} #1 &= #2} + +As a direct consequence of the second postulate, it follows, that for 2 events +in spacetime describing the propagation of a beam of light it must hold + +\begin{equation*} +c^2(t_2 - t_1)^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2 = 0 +\end{equation*} + +To abbreviate we introduce the following expressions + +\begin{align*} +t &= t_2 - t_1\\ +x &= x_2 - x_1\\ +y &= y_2 - y_1\\ +z &= z_2 - z_1 +\end{align*} + +Furthermore, because this must also hold in any other reference frame, for +example $\Sigma'$, we have: + +\begin{equation*} +c^2t^2 - x^2 - y^2 - z^2 = c^2{t'}^2 - {x'}^2 - {y'}^2 - {z'}^2 = 0 +\begin{end*} + +We introducing the Minkowski metric $\eta$ and rewrite this using matrices + +\begin{equation*} +\sum_{\mu\nu} \eta_{\mu\nu} {x'}_\mu {x'}_\nu = \sum_{\alpha\beta} \eta_{\alpha\beta} x_\alpha x_\beta +\end{equation*} + +Let us now consider some inertial system $\Sigma'$ that is moving away in +respect to $\Sigma$ with some constant speed $v$ in the x direction. We are +interested in the transformation that will allow us to convert the coordinates +between this 2 systems. + +Further development of our last equation yields: + +\begin{align*} +\sum_{\alpha\beta} \eta_{\alpha\beta} x_\alpha x_\beta &= \sum_{\mu\nu} \eta_{\mu\nu} \left(\sum_\alpha \Lambda_{\mu\alpha} x_\alpha \right) \left(\sum_\beta \Lambda_{\nu\beta} x_\beta \right)\\ +&= \sum_{\mu\nu\alpha\beta} \eta_{\mu\nu} \Lambda_{\mu\alpha} \Lambda_{\nu\beta} x_\alpha x_\beta +\end{align*} + +From this we notice + +\begin{align*} +\eta_{\alpha\beta} &= \sum_{\mu\nu} \eta_{\mu\nu} \Lambda_{\mu\alpha} \Lambda_{\nu\beta}\\ +&=\sum_{\mu\nu} (\Lambda^\text{T})_{\alpha\mu} \eta_{\mu\nu} \Lambda_{\nu\beta}\\ +&=\sum_{\nu} \left(\sum_\mu (\Lambda^\text{T})_{\alpha\mu} \eta_{\mu\nu}\right) \Lambda_{\nu\beta} +\end{align*} + +And thus + +\begin{equation*} +\eta = \Lambda^\text{T}\eta\Lambda +\end{equation*} -- cgit v1.2.3