From 61b5ce20f25c5785e41574998a12c6d06eb05a5e Mon Sep 17 00:00:00 2001 From: Thomas Albers Date: Wed, 8 Mar 2023 23:43:00 +0100 Subject: Restructure build system and directory structures --- src/math/spherical-harmonics.org | 119 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 119 insertions(+) create mode 100644 src/math/spherical-harmonics.org (limited to 'src/math/spherical-harmonics.org') diff --git a/src/math/spherical-harmonics.org b/src/math/spherical-harmonics.org new file mode 100644 index 0000000..b5183b5 --- /dev/null +++ b/src/math/spherical-harmonics.org @@ -0,0 +1,119 @@ +#+title: Solving the laplace equation in Spherical coordinates +#+author: Thomas Albers Raviola +#+date: 2022-12-15 +#+setupfile: ../../math_options.org + +* Disclaimer +This site as of now just a technology demonstration and its claims +should not be taken as true (even though I myself am pretty confident +they are) + +* Laplace equation + +{{{beg-eqn}}} +\Delta \phi = 0 +{{{end-eqn}}} + +Solutions to this equation are called harmonics + +* Laplace equation in spherical coordinates + +Using the definition for the laplace operator in spherical coordinates, it +follows: + +{{{beg-align}}} +\frac{1}{r^2}\pderiv{}{r}\left(r^2 \pderiv{\phi}{r}\right) + \frac{1}{r^2\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{\phi}{\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\phi}{\partial\varphi^2} &= 0\\ +\pderiv{}{r}\left(r^2 \pderiv{\phi}{r}\right) + \frac{1}{\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{\phi}{\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\phi}{\partial\varphi^2} &= 0 +{{{end-align}}} + +Using sepration of variables $\phi$ becomes +{{{beg-eqn}}} +\phi(r, \theta, \varphi) = R(r)Y(\theta, \varphi) +{{{end-eqn}}} + +Applying this to the original equation produces + +{{{beg-align}}} +\pderiv{}{r}\left(r^2 \pderiv{R}{r}\right)Y(\theta, \phi) + \left(\frac{1}{\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{\phi}{\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\phi}{\partial\varphi^2}\right)R(r) &= 0\\ +\frac{1}{R(r)}\pderiv{}{r}\left(r^2 \pderiv{R}{r}\right) + \frac{1}{Y(\theta, \phi)}\left(\frac{1}{\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{\phi}{\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\phi}{\partial\varphi^2}\right) &= 0 +{{{end-align}}} + +Because the terms depend on different independant variables, the only way the +equation holds is if both terms are constant. + +{{{beg-align}}} +&\frac{1}{R(r)}\pderiv{}{r}\left(r^2 \pderiv{R}{r}\right) = \lambda\\ +&\frac{1}{Y(\theta, \phi)}\left(\frac{1}{\sin\theta} \pderiv{}{\theta}\left(\sin\theta\pderiv{Y}{\theta}\right)+ \frac{1}{\sin^2\theta}\frac{\partial^2Y}{\partial\varphi^2}\right) = -\lambda +{{{end-align}}} + +* Angle dependant term +We again use separation of variables to solve the partial differential equation +of the angle dependant term. + +{{{beg-eqn}}} +Y(\theta, \varphi) = \Theta(\theta)\Phi(\varphi) +{{{end-eqn}}} + +Replacing into the equation + +{{{beg-eqn}}} +\lambda\sin^2\theta + \frac{\sin\theta}{\Theta(\theta)}\pderiv{}{\theta}\left(\sin\theta\pderiv{\Theta}{\theta}\right) ++ \frac{1}{\Phi(\varphi)}\frac{\partial^2\Phi}{\partial\varphi^2} = 0 +{{{end-eqn}}} + +Based on a similar argument it follows that both terms must be constant, with +this we may now solve for $\Phi$ + +{{{beg-eqn}}} +\frac{1}{\Phi(\varphi)}\frac{\partial^2\Phi}{\partial\varphi^2} = -m^2 +{{{end-eqn}}} + +{{{beg-eqn}}} +\Phi(\varphi) = e^{-m\varphi{}i} +{{{end-eqn}}} + +{{{beg-eqn}}} +\lambda\sin^2\theta + \frac{\sin\theta}{\Theta(\theta)}\pderiv{}{\theta}\left(\sin\theta\pderiv{\Theta}{\theta}\right) = m^2 +{{{end-eqn}}} + +{{{beg-eqn}}} +l(l+1)\sin^2(\theta)\Theta(\theta) + \pderiv{}{\theta}\left(\sin\theta\pderiv{\Theta}{\theta}\right) = m^2\Theta(\theta) +{{{end-eqn}}} + +{{{beg-eqn}}} +l(l+1)\sin^2(\theta)\Theta(\theta) + \sin(\theta)\left(\cos(\theta) \Theta'(\theta) + \sin(\theta) \Theta''(\theta)\right) = m^2\Theta(\theta) +{{{end-eqn}}} + +{{{beg-eqn}}} +\sin^2(\theta) \Theta''(\theta) + \sin(\theta)\cos(\theta) \Theta'(\theta) + (l(l+1)\sin^2(\theta) - m^2)\Theta(\theta) = 0 +{{{end-eqn}}} + +{{{beg-eqn}}} +\Theta''(\theta) + \cot(\theta)\Theta'(\theta) + \left(l(l+1) - \frac{m^2}{\sin^2\theta}\right)\Theta(\theta) = 0 +{{{end-eqn}}} + +{{{beg-eqn}}} +\Theta(\theta) = P(\cos \theta) +{{{end-eqn}}} + +{{{beg-eqn}}} +\cot(\theta)\Theta'(\theta) = \cot(\theta) \deriv{}{\theta}P(\cos \theta)=-\cos(\theta) P'(\cos\theta) +{{{end-eqn}}} + +{{{beg-eqn}}} +\frac{\text{d}^2}{\text{d}\theta^2}(P(\cos\theta)) = \sin^2(\theta) P''(\cos\theta) - \cos(\theta) P'(\cos\theta) +{{{end-eqn}}} + +{{{beg-eqn}}} +\sin^2(\theta) P''(\cos\theta) - 2\cos(\theta) P'(\cos\theta) + \left(l(l+1)-\frac{m^2}{\sin^2\theta}\right)P(\cos\theta) = 0 +{{{end-eqn}}} + +{{{beg-eqn}}} +x = \cos\theta +{{{end-eqn}}} + +{{{beg-eqn}}} +(1 - x^2)P''(x) - 2xP'(x) + \left(l(l+1)-\frac{m^2}{1-x^2}\right)P(x) = 0 +{{{end-eqn}}} + +Solve using Frobenius Method -- cgit v1.2.3