From 61b5ce20f25c5785e41574998a12c6d06eb05a5e Mon Sep 17 00:00:00 2001 From: Thomas Albers Date: Wed, 8 Mar 2023 23:43:00 +0100 Subject: Restructure build system and directory structures --- math/vectors.org | 58 -------------------------------------------------------- 1 file changed, 58 deletions(-) delete mode 100644 math/vectors.org (limited to 'math/vectors.org') diff --git a/math/vectors.org b/math/vectors.org deleted file mode 100644 index 49d8132..0000000 --- a/math/vectors.org +++ /dev/null @@ -1,58 +0,0 @@ -#+TITLE:Cross Product -#+SETUPFILE: ../math_options.org -#+LATEX_HEADER: \usepackage{bm} -#+LATEX_HEADER: \usepackage{mathtools} - -* Disclaimer -This site as of now just a technology demonstration and its claims -should not be taken as true (even though I myself am pretty confident -they are) - -* Definition -We shall define the cross product in terms of two properties we are -interested in: - -- Distributive: $\bm{a} \times \left(\bm{b} + \bm{c}\right) = \bm{a} \times \bm{b} + \bm{a} \times \bm{c}$ -- Orthogonal: $\bm{a} \times \bm{b} = \bm{c} \implies \bm{c} \cdot \bm{a} = \bm{0} \land \bm{c} \cdot \bm{b} = \bm{0}$ - -It is worth mentioning that given a pair of vectors in $\mathbb{R}^3$ -there exist an infinite amount of vectors that satisfy these -properties, so it is also necessary to introduce the following -relations between the basis vectors to properly define the cross -product. - -\begin{align*} -\bm{e}_1 &= \bm{e}_2 \times \bm{e}_3\\ -\bm{e}_2 &= \bm{e}_3 \times \bm{e}_1\\ -\bm{e}_3 &= \bm{e}_1 \times \bm{e}_2\\ -\bm{e}_i \times \bm{e}_i &= \bm{0},\qquad\text{For}\quad i = 1,2,3 -\end{align*} - -We introduce the Levi-Civita symbol to condense our calculations. - -\begin{equation*} -\epsilon_{ijk} \coloneqq \bm{e}_i \cdot \left(\bm{e}_j \times \bm{e}_k\right) -\end{equation*} - -Based on this we may now derive a way to compute the cross product of -two vectors - -\begin{align*} -\left[\bm{a} \times \bm{b}\right]_i &= \left[\left(\sum_j a_j \bm{e}_j\right) \times \left(\sum_k b_k \bm{e_k}\right)\right]_i\\ -&= \left[\sum_{jk} a_j b_k \left(\bm{e}_j \times \bm{e}_k\right)\right]_i\\ -&= \sum_{jk} a_j b_k \bm{e}_i \cdot \left(\bm{e}_j \times \bm{e}_k\right)\\ -&= \sum_{jk} \epsilon_{ijk} a_j b_k\\ -\bm{a} \times \bm{b} &= \sum_{ijk} \epsilon_{ijk} a_i b_j \bm{e}_k -\end{align*} - -* Properties -\begin{align*} -&\bm{a} \times \bm{b} = - \bm{b} \times \bm{a}\\ -&\bm{a} \cdot \left(\bm{b} \times \bm{c}\right) -= \bm{b} \cdot \left(\bm{c} \times \bm{a}\right) -= \bm{c} \cdot \left(\bm{a} \times \bm{b}\right)\\ -&\bm{a} \times \left(\bm{b} \times \bm{c}\right) -= \left(\bm{a} \cdot \bm{c}\right)\bm{b} - \left(\bm{a} \cdot \bm{b}\right)\bm{c}\\ -&\left(\bm{a} \times \bm{b}\right) \times \left(\bm{c} \times \bm{d}\right) -= \left(\bm{a}\cdot\bm{c}\right) \left(\bm{b}\cdot\bm{d}\right) - \left(\bm{a}\cdot\bm{d}\right) \left(\bm{b}\cdot\bm{c}\right) -\end{align*} -- cgit v1.2.3