From 561bac75579391c14e47eaccfabdf9eda98855da Mon Sep 17 00:00:00 2001 From: Thomas Albers Date: Wed, 27 Jul 2022 18:13:20 +0200 Subject: Initial commit --- math/vectors.org | 58 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 58 insertions(+) create mode 100644 math/vectors.org (limited to 'math/vectors.org') diff --git a/math/vectors.org b/math/vectors.org new file mode 100644 index 0000000..49d8132 --- /dev/null +++ b/math/vectors.org @@ -0,0 +1,58 @@ +#+TITLE:Cross Product +#+SETUPFILE: ../math_options.org +#+LATEX_HEADER: \usepackage{bm} +#+LATEX_HEADER: \usepackage{mathtools} + +* Disclaimer +This site as of now just a technology demonstration and its claims +should not be taken as true (even though I myself am pretty confident +they are) + +* Definition +We shall define the cross product in terms of two properties we are +interested in: + +- Distributive: $\bm{a} \times \left(\bm{b} + \bm{c}\right) = \bm{a} \times \bm{b} + \bm{a} \times \bm{c}$ +- Orthogonal: $\bm{a} \times \bm{b} = \bm{c} \implies \bm{c} \cdot \bm{a} = \bm{0} \land \bm{c} \cdot \bm{b} = \bm{0}$ + +It is worth mentioning that given a pair of vectors in $\mathbb{R}^3$ +there exist an infinite amount of vectors that satisfy these +properties, so it is also necessary to introduce the following +relations between the basis vectors to properly define the cross +product. + +\begin{align*} +\bm{e}_1 &= \bm{e}_2 \times \bm{e}_3\\ +\bm{e}_2 &= \bm{e}_3 \times \bm{e}_1\\ +\bm{e}_3 &= \bm{e}_1 \times \bm{e}_2\\ +\bm{e}_i \times \bm{e}_i &= \bm{0},\qquad\text{For}\quad i = 1,2,3 +\end{align*} + +We introduce the Levi-Civita symbol to condense our calculations. + +\begin{equation*} +\epsilon_{ijk} \coloneqq \bm{e}_i \cdot \left(\bm{e}_j \times \bm{e}_k\right) +\end{equation*} + +Based on this we may now derive a way to compute the cross product of +two vectors + +\begin{align*} +\left[\bm{a} \times \bm{b}\right]_i &= \left[\left(\sum_j a_j \bm{e}_j\right) \times \left(\sum_k b_k \bm{e_k}\right)\right]_i\\ +&= \left[\sum_{jk} a_j b_k \left(\bm{e}_j \times \bm{e}_k\right)\right]_i\\ +&= \sum_{jk} a_j b_k \bm{e}_i \cdot \left(\bm{e}_j \times \bm{e}_k\right)\\ +&= \sum_{jk} \epsilon_{ijk} a_j b_k\\ +\bm{a} \times \bm{b} &= \sum_{ijk} \epsilon_{ijk} a_i b_j \bm{e}_k +\end{align*} + +* Properties +\begin{align*} +&\bm{a} \times \bm{b} = - \bm{b} \times \bm{a}\\ +&\bm{a} \cdot \left(\bm{b} \times \bm{c}\right) += \bm{b} \cdot \left(\bm{c} \times \bm{a}\right) += \bm{c} \cdot \left(\bm{a} \times \bm{b}\right)\\ +&\bm{a} \times \left(\bm{b} \times \bm{c}\right) += \left(\bm{a} \cdot \bm{c}\right)\bm{b} - \left(\bm{a} \cdot \bm{b}\right)\bm{c}\\ +&\left(\bm{a} \times \bm{b}\right) \times \left(\bm{c} \times \bm{d}\right) += \left(\bm{a}\cdot\bm{c}\right) \left(\bm{b}\cdot\bm{d}\right) - \left(\bm{a}\cdot\bm{d}\right) \left(\bm{b}\cdot\bm{c}\right) +\end{align*} -- cgit v1.2.3