From 561bac75579391c14e47eaccfabdf9eda98855da Mon Sep 17 00:00:00 2001 From: Thomas Albers Date: Wed, 27 Jul 2022 18:13:20 +0200 Subject: Initial commit --- math/orbit.org | 93 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 93 insertions(+) create mode 100644 math/orbit.org (limited to 'math/orbit.org') diff --git a/math/orbit.org b/math/orbit.org new file mode 100644 index 0000000..88079a6 --- /dev/null +++ b/math/orbit.org @@ -0,0 +1,93 @@ +#+TITLE:Orbit +#+SETUPFILE: ../math_options.org +#+LATEX_HEADER: \usepackage{bm} +#+LATEX_HEADER: \usepackage{mathtools} +#+LATEX_HEADER: \usepackage{amssymb} +#+LATEX_HEADER: \newcommand{\deriv}[2]{\frac{\text{d}#1}{\text{d}#2}} +#+LATEX_HEADER: \newcommand{\unitv}[1]{\bm{\hat{e}}_#1} + +* Disclaimer +This site as of now just a technology demonstration and its claims +should not be taken as true (even though I myself am pretty confident +they are) +* Deriving Kepler's first law from Newton's law of universal gravitation + +The movement of an object with mass $m$ orbiting another body with mass $M$ is +given by Newton's law of gravitation. If $m \ll M$ it is possible to consider +the position of the larger object constant and use it as the origin of our +coordinate system. Then the following equation applies for movement of the +smaller object: + +\begin{equation*} +m\ddot{\bm{r}} = - \frac{GMm}{r^3}\bm{r} \Leftrightarrow \ddot{\bm{r}} = - \frac{GM}{r^3}\bm{r} +\end{equation*} + +In order to solve this differential equation we first consider the angular +momentum of or object around its orbit. + +\begin{equation*} +\bm{L} = \bm{r} \times m \dot{\bm{r}} +\end{equation*} + +In the abscense of external toques, because the only force acting on the object +is parallel to its position, the angular momentum is conserved. + +\begin{equation*} +\deriv{\bm{L}}{t} = \dot{\bm{r}} \times m \dot{\bm{r}} + \bm{r} \times m \ddot{\bm{r}} = 0 +\end{equation*} + +We now multiply both sides of our equation from the right by the angular +momentum and develop the right side of the equation using vector identities. + +\begin{align*} +\ddot{\bm{r}} \times \bm{L} &= -GM\frac{\bm{r} \times \left(\bm{r} \times m \dot{\bm{r}}\right)}{r^3}\\ +&= - \frac{GMm}{r^3} \left(\left(\bm{r} \cdot \dot{\bm{r}}\right)\bm{r} - \left(\bm{r} \cdot \bm{r}\right)\dot{\bm{r}}\right)\\ +&= GMm\left(\frac{\left(\bm{r} \cdot \bm{r}\right)\dot{\bm{r}}}{r^3} - \frac{\left(\bm{r} \cdot \dot{\bm{r}}\right)\bm{r}}{r^3}\right)\\ +&= GMm\left(\frac{\dot{\bm{r}}}{r} - \frac{\left(\bm{r} \cdot \dot{\bm{r}}\right)\bm{r}}{r^3}\right)\\ +&= GMm\left(\frac{1}{r} \deriv{\bm{r}}{t} + \deriv{}{t}\left(\frac{1}{r}\right)\bm{r}\right)\\ +&= GMm\deriv{}{t}\left(\frac{\bm{r}}{r}\right) +\end{align*} + +We observe that each side of our equation is a derivative of a quantity. We know +integrate both sides and take the integrations constant into account. + +\begin{align*} +& \deriv{}{t} \left(\dot{\bm{r}} \times \bm{L}\right) = GM \deriv{}{t}\left(\frac{\bm{r}}{r}\right)\\ +\Leftrightarrow \quad & \dot{\bm{r}} \times \bm{L} = GM \frac{\bm{r}}{r} + \bm{a} +\end{align*} + +Our objective is now to solve the equation for $r$, so we multiply both sides by $\bm{r}$: + +\begin{align*} +\dot{\bm{r}} \times \left(\bm{r} \times \dot{\bm{r}}\right) &= GM \frac{\bm{r}}{r} + \bm{a}\\ +\bm{r} \cdot \left(\dot{\bm{r}} \times \left(\bm{r} \times \dot{\bm{r}}\right)\right) &= GMr + \bm{r} \cdot \bm{a} +\end{align*} + +By applying a cyclic permutation of the resulting triple product and using the +known property of the scalar product we now express the equation only in terms +of the magnitudes of the vectors. + +\begin{align*} +\left(\bm{r} \times \dot{\bm{r}}\right) \cdot \left(\bm{r} \times \dot{\bm{r}}\right) &= GMr + \bm{r} \cdot \bm{a}\\ +\left(\frac{L}{m}\right)^2 &= GMr + \bm{r} \cdot \bm{a}\\ +\left(\frac{L}{m}\right)^2 &= GMr + r a \cos\theta +\end{align*} + +The last steps are to solve for $r$ + +\begin{align*} +r &= \left(\frac{L}{m}\right)^2 \frac{1}{GM + a \cos\theta}\\ +&= \left(\frac{L}{m}\right)^2 \frac{1}{GM} \frac{1}{1 + \frac{a}{GM} \cos\theta}\\ +&= \left(\frac{L}{m}\right)^2 \frac{1}{GM} \frac{1}{1 + e\cos\theta} +\end{align*} + +Finally we reach our result. Objects orbiting according to Newton's Law of +Gravitation follow paths that correspond to the conic sections. Here is Kepler's +first Law a special case, where our object has a stable orbit around the larger +body. + +\begin{equation*} +r &= \frac{L^2}{GM m^2} \frac{1}{1 + e\cos\theta} +\end{equation*} + +* Deriving a physical interpretation of the excentricity of the orbit -- cgit v1.2.3